A simple wrapper function to quickly identify anomalies using contamination rate
Examples
# Train model and detect anomalies
model <- isoForest(iris[1:4])
anomalies <- is_anomaly(model, contamination = 0.05)
# Show anomalous samples
iris[anomalies, ]
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 16 5.7 4.4 1.5 0.4 setosa
#> 33 5.2 4.1 1.5 0.1 setosa
#> 42 4.5 2.3 1.3 0.3 setosa
#> 110 7.2 3.6 6.1 2.5 virginica
#> 115 5.8 2.8 5.1 2.4 virginica
#> 118 7.7 3.8 6.7 2.2 virginica
#> 119 7.7 2.6 6.9 2.3 virginica
#> 132 7.9 3.8 6.4 2.0 virginica